$\lim_{x\to\infty}\left(\cos\left(x\left(\pi\right)\right)\right)$
$\left(2x^3+x^2\right)^3$
$\left(5x^2+x\right)+\left(2x+3\right)+\left(5x^2+x\right)+\left(2x+3\right)$
$x^2-2x+1=9$
$\frac{-9^6}{-27^{10}}$
$y=\frac{e^x\cdot\sin\left(3x^2+4x\right)}{x+1}$
$w=\left(w\cdot\:\:u\right)u\:+\:\left(w\cdot\:\:v\right)v$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!