$\left(-7\right)\cdot4-56:\left(-8\right)+\left(-9\right)\cdot\left(-3\right)$
$-2^3+5-6$
$\int x^3\sqrt{2x^2+1}dx$
$\lim_{x\to\infty}\left(x^2\pi^{x-1}\right)$
$\int\left(3x+6\right)^2dx$
$\left(4\right)x\left(-3\right)x\left(6\right)$
$\frac{sin\left(x\right)}{1-cos\left(x\right)}-\frac{cos\left(x\right)}{sin\left(x\right)}=\frac{1}{sin\left(x\right)}$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!