Exercise
$\frac{2}{\sec\:^2\left(x\right)}+\frac{\tan\:^2\left(x\right)}{\sec\:^2\left(x\right)}-1$
Step-by-step Solution
Learn how to solve problems step by step online. Simplify the trigonometric expression 2/(sec(x)^2)+(tan(x)^2)/(sec(x)^2)+-1. Combine fractions with common denominator \sec\left(x\right)^2. Combine all terms into a single fraction with \sec\left(x\right)^2 as common denominator. Applying the trigonometric identity: \sec\left(\theta \right)^2 = 1+\tan\left(\theta \right)^2. Simplify the product -(1+\tan\left(x\right)^2).
Simplify the trigonometric expression 2/(sec(x)^2)+(tan(x)^2)/(sec(x)^2)+-1
Final answer to the exercise
$\frac{1}{\sec\left(x\right)^2}$