$\lim_{x\to\infty}\left(\sqrt{x-2}-\sqrt{x}\right)$
$\left(1-\cos\left(m\right)\right)\left(1+\cos\left(m\right)\right)=\sin\left(^2\right)m$
$\int_{-\infty}^0\left(cosw\right)dx$
$\frac{36p^4q^{-4}}{25p^2q^{-2}}\left(\frac{1}{2}\right)$
$\frac{\sqrt{4}}{2}$
$\frac{3}{5}m^2-2mn+\frac{1}{10}m^2-\frac{1}{3}mn+2mn-2mx^2$
$\left(x\right)\left(2+\sqrt{4-x}\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!