$\int\frac{x^2+x\:+4}{\left(x+3\right)\left(x^2+1\right)}dx$
$m^2\:+2xm\:+\:x^2$
$y^2\frac{dx}{dy}+3xy=1+y^2$
$\int_0^3\left(\sqrt{1+x^2}\right)dx$
$\int\frac{x^4-4x^2+x+1}{x^3+x^2-4x-4}dx$
$\left(4x^2-3x\right)\left(8x^2-4x\right)$
$+4\:x\:-4$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!