Exercise
csc(x)2−11−sin(x)2
Step-by-step Solution
1
Applying the trigonometric identity: csc(θ)2−1=cot(θ)2
cot(x)21−sin(x)2
2
Apply the trigonometric identity: 1−sin(θ)2=cos(θ)2
cot(x)2cos(x)2
Why is 1 - sin(x)^2 = cos(x)^2 ?
3
Apply the trigonometric identity: cot(x)=sin(x)cos(x)
sin(x)2cos(x)2cos(x)2
Why is cot(x) = cos(x)/sin(x) ?
4
Divide fractions sin(x)2cos(x)2cos(x)2 with Keep, Change, Flip: a÷cb=1a÷cb=1a×bc=ba⋅c
cos(x)2cos(x)2sin(x)2
5
Simplify the fraction cos(x)2cos(x)2sin(x)2 by cos(x)2
sin(x)2
Final answer to the exercise
sin(x)2