$\int_0^{\infty}\left(y^{a-1}e^{-y}\right)dx$
$\int\left(\frac{sin\left(8x+20\right)}{cos^2\left(8x+20\right)}\right)dx$
$\left(2b-4\right)^3$
$2\left(x^2+20x+50\right)$
$x^4-12x^3+18x$
$\sin^2x+\cos\left(2x\right)=\cos^2x$
$\frac{\left(\sqrt{x^2}-49\right)}{7x}$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!