$\left(3m^4a^3\right)^2$
$\ln y=\ln\left(-\frac{15}{4\left(x+3\right)^4}\right)$
$\left(7x+x^4\right)\frac{dy}{dx}=\frac{x^3}{y}$
$\int3x^2-4x+5\left(x-1\right)\left(x^2+1\right)dx$
$\left(7x^{3\:}-3x+1\right)-\left(9x^2+5x-6\right)$
$3x-8\ge x+6$
$\lim_{x\to\infty}\left(\frac{x^2-4x+7}{x-6}\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!