Exercise
$\frac{1-\sin^2\theta}{1+\tan^2\theta}$
Step-by-step Solution
Learn how to solve problems step by step online. Simplify the trigonometric expression (1-sin(t)^2)/(1+tan(t)^2). Factor the difference of squares 1-\sin\left(\theta\right)^2 as the product of two conjugated binomials. Apply the trigonometric identity: \tan\left(\theta \right)^n=\frac{\sin\left(\theta \right)^n}{\cos\left(\theta \right)^n}, where x=\theta and n=2. Simplify the fraction \frac{\sin\left(x\right)^2}{\cos\left(x\right)^2}+1 into \frac{1}{\cos\left(x\right)^2}. Solve the product of difference of squares \left(1+\sin\left(\theta\right)\right)\left(1-\sin\left(\theta\right)\right).
Simplify the trigonometric expression (1-sin(t)^2)/(1+tan(t)^2)
Final answer to the exercise
$\cos\left(\theta\right)^{4}$