Applying the trigonometric identity: 1−sin(θ)2=cos(θ)21-\sin\left(\theta \right)^2 = \cos\left(\theta \right)^21−sin(θ)2=cos(θ)2
Try other ways to solve this exercise
64n63\:\sqrt[3]{64n^6}364n6
∫8x3+13(x2+2)2dx\int\frac{8x^3+13}{\left(x^2+2\right)^2}dx∫(x2+2)28x3+13dx
(a+x)a+x\left(a+x\right)\sqrt{a+x}(a+x)a+x
16x8y104\sqrt[4]{16x^8y^{10}}416x8y10
cos(x)⋅cot(x)⋅csc(x)=cot2x\cos\left(x\right)\cdot\cot\left(x\right)\cdot\csc\left(x\right)=\cot^2xcos(x)⋅cot(x)⋅csc(x)=cot2x
∫x5sin(x6+2)dx\int x^5\sin\left(x^6+2\right)dx∫x5sin(x6+2)dx
1a+4a+1001a+4a+1001a+4a+100
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!