Exercise
$\frac{1}{1-\cos x}=\csc^2x+\csc x\cdot\cot x$
Step-by-step Solution
Learn how to solve integral calculus problems step by step online. Prove the trigonometric identity 1/(1-cos(x))=csc(x)^2+csc(x)cot(x). Starting from the right-hand side (RHS) of the identity. Applying the cosecant identity: \displaystyle\csc\left(\theta\right)=\frac{1}{\sin\left(\theta\right)}. Applying the trigonometric identity: \cot\left(\theta \right) = \frac{\cos\left(\theta \right)}{\sin\left(\theta \right)}. Applying the cosecant identity: \displaystyle\csc\left(\theta\right)=\frac{1}{\sin\left(\theta\right)}.
Prove the trigonometric identity 1/(1-cos(x))=csc(x)^2+csc(x)cot(x)
Final answer to the exercise
true