$\arctan\left(e^{-\infty}\right)$
$\left(20\right)^4$
$\frac{x^3+y^3}{\sqrt[5]{x^3+1}+2x-1}$
$\left(\sin\left(x\right)\right)^4-2\left(\sin\left(x\right)\right)^2+1=0$
$\left(x^2+1\right)y'+\left(4xy\right)=x$
$\int_{-\infty}^1\frac{3x^3+5x}{x^2+1}dx$
$-3h^2-90h-675$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!