Exercise
$\frac{1}{\cos\left(x\right)}-\frac{\cos\left(x\right)}{1+\sin\left(x\right)}w$
Step-by-step Solution
Learn how to solve equivalent expressions problems step by step online. Simplify the expression 1/cos(x)+(-cos(x))/(1+sin(x))w. Combine \frac{1}{\cos\left(x\right)}+w\frac{-\cos\left(x\right)}{1+\sin\left(x\right)} in a single fraction. Multiplying the fraction by w\cos\left(x\right). When multiplying two powers that have the same base (\cos\left(x\right)), you can add the exponents. Combine 1+\frac{-w\cos\left(x\right)^2}{1+\sin\left(x\right)} in a single fraction.
Simplify the expression 1/cos(x)+(-cos(x))/(1+sin(x))w
Final answer to the exercise
$\frac{-w\cos\left(x\right)^2+1+\sin\left(x\right)}{\left(1+\sin\left(x\right)\right)\cos\left(x\right)}$