Exercise
$\frac{1+\cos2x}{\sin2x}=\cot x$
Step-by-step Solution
Learn how to solve division of numbers problems step by step online. Prove the trigonometric identity (1+cos(2x))/sin(2x)=cot(x). Starting from the left-hand side (LHS) of the identity. Simplify 1+\cos\left(2x\right) into 2\cos\left(x\right)^2 by applying trigonometric identities. Using the sine double-angle identity: \sin\left(2\theta\right)=2\sin\left(\theta\right)\cos\left(\theta\right). Simplify the fraction \frac{2\cos\left(x\right)^2}{2\sin\left(x\right)\cos\left(x\right)} by 2.
Prove the trigonometric identity (1+cos(2x))/sin(2x)=cot(x)
Final answer to the exercise
true