xdx=y2dyxdx=y^2dyxdx=y2dy
∫x2−13x+6(x−1)(x+2)(x−2)dx\int\frac{x^2-13x+6}{\left(x-1\right)\left(x+2\right)\left(x-2\right)}dx∫(x−1)(x+2)(x−2)x2−13x+6dx
3xy4y3xy4y3xy4y
dydx=(x+1)2\frac{dy}{dx}=_{\left(x+1\right)^2}dxdy=(x+1)2
x+3=12\sqrt{x}+3=12x+3=12
−1(r+48)+664<433-1\left(r+48\right)+664<433−1(r+48)+664<433
cos(x)+sin(x)tan(x)+tan2(x)\frac{cos\left(x\right)+sin\left(x\right)}{tan\left(x\right)+tan^2\left(x\right)}tan(x)+tan2(x)cos(x)+sin(x)
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!