Apply the addition formula: sin(x+π4)=sin(x)2+cos(x)2\sin\left(x+\frac{\pi}{4}\right)=\frac{\sin\left(x\right)}{\sqrt{2}}+\frac{\cos\left(x\right)}{\sqrt{2}}sin(x+4π)=2sin(x)+2cos(x)
Try other ways to solve this exercise
dydx+2yx=sin(x)\frac{dy}{dx}+\frac{2y}{x}=\sin\left(x\right)dxdy+x2y=sin(x)
−8748−6561-8748-6561−8748−6561
5⋅8⋅65\cdot8\cdot65⋅8⋅6
−220 : (−2) . 3-220\::\:\left(-2\right)\:.\:3−220:(−2).3
x2+3x−270x^2+3x-270x2+3x−270
∫(x+5)(x−5)13 dx\int\left(x+5\right)\left(x-5\right)^{\frac{1}{3}}\:dx∫(x+5)(x−5)31dx
(x−10)(x+15)\left(x-10\right)\left(x+15\right)(x−10)(x+15)
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!