$\lim_{x\to\frac{\pi}{4}}\left(1-\tan\left(x\right)\sec\left(2x\right)\right)$
$\left(1+x\right)\left(1-x\right)^n$
$\lim_{n\to\infty}x\left(\sqrt{x^2}+1-x\right)$
$81x^2-16x^6$
$m'+1=10$
$\int\left(cos\left(2x\right)e^{17sin\left(2x\right)}\right)dx$
$\left(2x^4-6x^3+5x^2-4x+3\right)\cdot\left(2x^2+9x+6\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!