$\int_0^{\infty}16e^{-16x}dx$
$\frac{9\cdot\sqrt{-16}}{2}$
$t^2-12t+4$
$-9+10+4+5+6$
$y'-2y=te^{-3t}$
$8x^2+16x+20$
$x^2\left(1+x\right)\left(-1+x\right)-90$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!