log10(x)+log10(x+12)=log10(x−10)\log_{10}\left(x\right)+\log_{10}\left(x+12\right)=\log_{10}\left(x-10\right)log10(x)+log10(x+12)=log10(x−10)
(x2x2−x+42)−(36x2−x+42)\left(\frac{x^2}{x^2-x+42}\right)-\left(\frac{36}{x^2-x+42}\right)(x2−x+42x2)−(x2−x+4236)
∫13(2x3+10x−1x2+5)dx\int_1^3\left(\frac{2x^3+10x-1}{x^2+5}\right)dx∫13(x2+52x3+10x−1)dx
a2a33\sqrt[3]{a^2\sqrt[3]{a}}3a23a
dη(t)dt=exp(t)η\frac{d\eta\left(t\right)}{dt}=\frac{\exp\left(t\right)}{\eta}dtdη(t)=ηexp(t)
ddx(y2=xx2)\frac{d}{dx}\left(y^2=x^{x^2}\right)dxd(y2=xx2)
x2+4x+4≥0x^2+4x+4\ge0x2+4x+4≥0
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!