Exercise
$\frac{\frac{1}{a+h}-\frac{1}{a}}{h}$
Step-by-step Solution
Learn how to solve simplification of algebraic fractions problems step by step online. Simplify the expression (1/(a+h)+-1/a)/h. Combine \frac{1}{a+h}+\frac{-1}{a} in a single fraction. Combine -1+\frac{a}{a+h} in a single fraction. Divide fractions \frac{\frac{\frac{a-\left(a+h\right)}{a+h}}{a}}{h} with Keep, Change, Flip: \frac{a}{b}\div c=\frac{a}{b}\div\frac{c}{1}=\frac{a}{b}\times\frac{1}{c}=\frac{a}{b\cdot c}. Divide fractions \frac{\frac{a-\left(a+h\right)}{a+h}}{ah} with Keep, Change, Flip: \frac{a}{b}\div c=\frac{a}{b}\div\frac{c}{1}=\frac{a}{b}\times\frac{1}{c}=\frac{a}{b\cdot c}.
Simplify the expression (1/(a+h)+-1/a)/h
Final answer to the exercise
$\frac{-1}{\left(a+h\right)a}$