Exercise
$\frac{\cos\left(x\right)-\cos^3x}{\sin^3\left(x\right)}=\cot\left(x\right)$
Step-by-step Solution
Learn how to solve problems step by step online. Prove the trigonometric identity (cos(x)-cos(x)^3)/(sin(x)^3)=cot(x). Starting from the left-hand side (LHS) of the identity. Factor the polynomial \cos\left(x\right)-\cos\left(x\right)^3 by it's greatest common factor (GCF): \cos\left(x\right). Apply the trigonometric identity: 1-\cos\left(\theta \right)^2=\sin\left(\theta \right)^2. Simplify the fraction by \sin\left(x\right).
Prove the trigonometric identity (cos(x)-cos(x)^3)/(sin(x)^3)=cot(x)
Final answer to the exercise
true