$\lim_{x\to\infty}\left(\frac{e^x+1}{e^x+x}\right)$
$\int sin\left(x\right)sec^5\left(x\right)dx$
$y'\:+\:tan\left(x\right)y\:=\:2\:sin\left(x\right)\:cos^2\left(x\right)$
$\left(x-1\right)\left(x-20\right)$
$2-\left(3-2+5-1\right)+2\cdot\left(3-6\right)$
$8\sin\left(x\right)=2+\frac{5}{\csc\left(x\right)}$
$4\:+\:36\::\:9\:-\:50\::\:\left[12\:+\:\left(17\:-\:4\right)\right]$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!