$\lim_{x\to\infty}\left(\frac{x^3-2x+3}{x^3+4}\right)^{\frac{1-x^3}{x}}$
$4-2f>f-5$
$\lim_{x\to1}\frac{\left(x^n-1\right)}{x-1}$
$\left(\frac{2}{3}+3y^3\right)\left(3y^3-\frac{4}{5}\right)$
$2\sqrt{81}$
$-2s^{-3}t\left(7s^{-8}t^5\right)$
$3^4-2^2-8$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!