$\lim_{x\to\infty}\left(\sqrt{x^2+4}-\sqrt{x^2-1}\right)$
$\frac{\cot\left(a\right)\sec\left(a\right)^2}{1+\cot\left(a\right)^2}=\tan\left(a\right)$
$\frac{78}{1.8}$
$9-4n\ge1$
$\int x\sin\left(6x\right)dx$
$15x^2-30x-30$
$\frac{x^3-x^2}{x^2+1}$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!