Applying the trigonometric identity: cot(θ)=cos(θ)sin(θ)\cot\left(\theta \right) = \frac{\cos\left(\theta \right)}{\sin\left(\theta \right)}cot(θ)=sin(θ)cos(θ)
Try other ways to solve this exercise
(x+5)2+(x+5)−72\left(x+5\right)^2+\left(x+5\right)-72(x+5)2+(x+5)−72
2cos9x − 2 = 02cos9x\:-\:\sqrt{2}\:\:=\:02cos9x−2=0
28−4x−3+3x28-4x-3+3x28−4x−3+3x
3−423-4^23−42
−(−14+15−9)-\left(-14+15-9\right)−(−14+15−9)
dzdx=21+z2(10−x)\frac{dz}{dx}=\frac{2\sqrt{1+z^2}}{\left(10-x\right)}dxdz=(10−x)21+z2
3x6−753x^6-753x6−75
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!