$\lim_{x\to-1}\left(\frac{4x^4+5x^3+7x+8}{x+1}\right)$
$\lim_{x\to0}\left(\frac{\tan\left(x\right)-x\cdot\sin\left(x\right)}{x^2}\right)$
$\left(3x+7m^2\right)^3$
$-\left(3x^2+5\right)\left(3x^2-5\right)$
$\frac{6x-7}{4}\ge-5$
$3x\left(y^2+\:1\right)dx\:+\:y\left(x^2\:+\:2\right)dy\:=\:0$
$\left(5x-3\right)+\left(11-2x\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!