Exercise
$\cos\left(\pi-x\right)=\cos x$
Step-by-step Solution
Learn how to solve integral calculus problems step by step online. Solve the trigonometric equation cos(pi-x)=cos(x). Grouping all terms to the left side of the equation. Using the cosine of a sum formula: \cos(\alpha\pm\beta)=\cos(\alpha)\cos(\beta)\mp\sin(\alpha)\sin(\beta), where angle \alpha equals \pi , and angle \beta equals x. The sine of \pi equals 0. The cosine of \pi equals -1.
Solve the trigonometric equation cos(pi-x)=cos(x)
Final answer to the exercise
$x=\frac{1}{2}\pi+2\pi n,\:x=\frac{3}{2}\pi+2\pi n\:,\:\:n\in\Z$