$\lim_{x\to\infty}\left(\frac{\left(4x^2-x+1\right)}{4x+2x^2-\sqrt{x^2+1}}\right)$
$\left(a^{10}+1\right)\left(a^{10}-1\right)$
$\lim_{x\to\infty}\left(\frac{\left(-2\right)^{1+3\cdot\left(x+1\right)}}{5^{x+1}\cdot\left(x+1\right)^3}\right)$
$10\cdot3x^3$
$\:9\left(x-y\right)^2+12\left(x-y\right)\left(x+y\right)+4\left(x+y\right)^2$
$\frac{1+sen\left(x\right)}{1-sen\left(x\right)}$
$\int\frac{5x^2}{\left(1-x^2\right)^{\frac{3}{2}}}dx$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!