$\left(4x^3+4x^2-5x+6\right)\left(2x^3+x^2-7x+1\right)$
$8x\left(x-3\right)$
$\int_0^{\pi}\left(sen\left(x+xp\right)\right)dx$
$\frac{x^2+8x^2+6x+1}{x+5}$
$\lim_{x\to\infty}\left(\frac{3x^3+5x^2+9}{2x^2+7}\right)$
$10x+8=8x+16$
$mx^{\left(2m+3\right)}3x^{\left(m+5\right)}$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!