Exercise
$\:\frac{3sin\left(x-y\right)}{cos\left(x\right)cos\left(y\right)}$
Step-by-step Solution
Learn how to solve simplify trigonometric expressions problems step by step online. Simplify the trigonometric expression (3sin(x-y))/(cos(x)cos(y)). Using the sine of a sum formula: \sin(\alpha\pm\beta)=\sin(\alpha)\cos(\beta)\pm\cos(\alpha)\sin(\beta), where angle \alpha equals x, and angle \beta equals -y. Multiply the single term 3 by each term of the polynomial \left(\sin\left(x\right)\cos\left(y\right)-\cos\left(x\right)\sin\left(y\right)\right). Expand the fraction \frac{3\sin\left(x\right)\cos\left(y\right)-3\cos\left(x\right)\sin\left(y\right)}{\cos\left(x\right)\cos\left(y\right)} into 2 simpler fractions with common denominator \cos\left(x\right)\cos\left(y\right). Simplify the resulting fractions.
Simplify the trigonometric expression (3sin(x-y))/(cos(x)cos(y))
Final answer to the exercise
$3\tan\left(x\right)-3\tan\left(y\right)$