$\int\left(cos\left(3x+4\right)\right)dx$
$cos\left(x\right)=sin\left(1.17671593773218\right)sin\left(1.05099312964406\right)+cos\left(1.17671593773218\right)cos\left(1.05099312964406\right)cos\left(0.03479714429\right)$
$\lim_{x\to\infty}\left(1+e^{2x}\right)^{\frac{1}{4x}}$
$\int xe^{x^2-5}dx$
$\pi\int_0^1\left(xe^x\right)dx$
$\frac{1-sec^2\left(\theta\:\right)}{sec^2\left(\theta\:\right)}$
$16.\left(-2\right)^2+\left(-6+1\right)^3$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!