Find the derivative of $\ln\left(x\right)$ using the definition

Step-by-step Solution

Go!
Symbolic mode
Text mode
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

Final answer to the problem

$\frac{1}{x}$
Got another answer? Verify it here!

Step-by-step Solution

1

Find the derivative of $\ln\left(x\right)$ using the definition. Apply the definition of the derivative: $\displaystyle f'(x)=\lim_{h\to0}\frac{f(x+h)-f(x)}{h}$. The function $f(x)$ is the function we want to differentiate, which is $\ln\left(x\right)$. Substituting $f(x+h)$ and $f(x)$ on the limit, we get

$\lim_{h\to0}\left(\frac{\ln\left(x+h\right)-\ln\left(x\right)}{h}\right)$
2

The difference of two logarithms of equal base $b$ is equal to the logarithm of the quotient: $\log_b(x)-\log_b(y)=\log_b\left(\frac{x}{y}\right)$

$\lim_{h\to0}\left(\frac{\ln\left(\frac{x+h}{x}\right)}{h}\right)$
3

Simplify the fraction

$\lim_{h\to0}\left(\frac{1}{h}\ln\left(\frac{x+h}{x}\right)\right)$
4

Using the power rule of logarithms: $n\log_b(a)=\log_b(a^n)$, where $n$ equals $\frac{1}{h}$

$\lim_{h\to0}\left(\ln\left(\left(\frac{x+h}{x}\right)^{\frac{1}{h}}\right)\right)$
5

Expand the fraction $\left(\frac{x+h}{x}\right)$ into $2$ simpler fractions with common denominator $x$

$\lim_{h\to0}\left(\ln\left(\left(\frac{x}{x}+\frac{h}{x}\right)^{\frac{1}{h}}\right)\right)$

Simplify the fraction $\frac{x}{x}$ by $x$

$\lim_{h\to0}\left(\ln\left(\left(1+\frac{h}{x}\right)^{\frac{1}{h}}\right)\right)$
6

Simplify the resulting fractions

$\lim_{h\to0}\left(\ln\left(\left(1+\frac{h}{x}\right)^{\frac{1}{h}}\right)\right)$
7

Apply the substitution $\frac{h}{x}=\frac{1}{n}$, then $h=\frac{x}{n}$. Since $h$ is approaching $0$, it is the same as if $n$ approaches $\infty$. Substituting

$\lim_{n\to\infty }\left(\ln\left(\left(1+\frac{1}{n}\right)^{\frac{n}{x}}\right)\right)$
8

Rewrite the power $\left(1+\frac{1}{n}\right)^{\frac{n}{x}}$ by applying properties of exponents

$\lim_{n\to\infty }\left(\ln\left(\left(\left(1+\frac{1}{n}\right)^n\right)^{\frac{1}{x}}\right)\right)$
9

Using the power rule of logarithms: $\log_a(x^n)=n\cdot\log_a(x)$

$\lim_{n\to\infty }\left(\frac{1}{x}\ln\left(\left(1+\frac{1}{n}\right)^n\right)\right)$
10

The limit of the product of a function and a constant is equal to the limit of the function, times the constant: $\displaystyle \lim_{t\to 0}{\left(at\right)}=a\cdot\lim_{t\to 0}{\left(t\right)}$

$\frac{1}{x}\lim_{n\to\infty }\left(\ln\left(\left(1+\frac{1}{n}\right)^n\right)\right)$
11

The limit of a logarithm is equal to the logarithm of the limit

$\frac{1}{x}\ln\left(\lim_{n\to\infty }\left(\left(1+\frac{1}{n}\right)^n\right)\right)$
12

Using the representation of $e$ as a limit

$\ln\left(e^1\right)\frac{1}{x}$
13

Calculating the natural logarithm of $e^1$

$\frac{1}{x}$

Final answer to the problem

$\frac{1}{x}$

Explore different ways to solve this problem

Solving a math problem using different methods is important because it enhances understanding, encourages critical thinking, allows for multiple solutions, and develops problem-solving strategies. Read more

Help us improve with your feedback!

Function Plot

Plotting: $\frac{1}{x}$

SnapXam A2
Answer Assistant

beta
Got a different answer? Verify it!

Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

How to improve your answer:

Main Topic: Properties of Logarithms

They are properties that can help us simplify expressions with logarithms.

Used Formulas

See formulas (1)

Your Personal Math Tutor. Powered by AI

Available 24/7, 365 days a year.

Complete step-by-step math solutions. No ads.

Choose between multiple solving methods.

Download solutions in PDF format and keep them forever.

Unlimited practice with our AI whiteboard.

Premium access on our iOS and Android apps.

Join 500k+ students in problem solving.

Choose your plan. Cancel Anytime.
Pay $39.97 USD securely with your payment method.
Please hold while your payment is being processed.

Create an Account