Final answer to the problem
Step-by-step Solution
Learn how to solve limits by l'hôpital's rule problems step by step online. Find the limit of (e^x+x)^(1/x) as x approaches 0. Rewrite the limit using the identity: a^x=e^{x\ln\left(a\right)}. Multiplying the fraction by \ln\left(e^x+x\right). Apply the power rule of limits: \displaystyle{\lim_{x\to a}f(x)^{g(x)} = \lim_{x\to a}f(x)^{\displaystyle\lim_{x\to a}g(x)}}. The limit of a constant is just the constant.