Find the integral $\int\left(x^2-2x+3\right)\left(\cos\left(3x\right)+\sin\left(3x\right)\right)dx$

Step-by-step Solution

Go!
Symbolic mode
Text mode
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

Final answer to the problem

$\frac{25}{27}\sin\left(3x\right)+\frac{2}{9}x\cos\left(3x\right)+\frac{1}{3}x^2\sin\left(3x\right)-\frac{25}{27}\cos\left(3x\right)+\frac{2}{9}x\sin\left(3x\right)-\frac{1}{3}x^2\cos\left(3x\right)-\frac{2}{9}\cos\left(3x\right)-\frac{2}{3}x\sin\left(3x\right)-\frac{2}{9}\sin\left(3x\right)+\frac{2}{3}x\cos\left(3x\right)+C_0$
Got another answer? Verify it here!

Step-by-step Solution

Create a free account and unlock the first 3 steps of every solution

Also, get 3 free complete solutions daily when you signup with your academic email.

Learn how to solve tabular integration problems step by step online. Find the integral int((x^2-2x+3)(cos(3x)+sin(3x)))dx. Rewrite the integrand \left(x^2-2x+3\right)\left(\cos\left(3x\right)+\sin\left(3x\right)\right) in expanded form. Expand the integral \int\left(x^2\cos\left(3x\right)+x^2\sin\left(3x\right)-2x\cos\left(3x\right)-2x\sin\left(3x\right)+3\cos\left(3x\right)+3\sin\left(3x\right)\right)dx into 6 integrals using the sum rule for integrals, to then solve each integral separately. The integral \int x^2\cos\left(3x\right)dx results in: \frac{1}{3}x^2\sin\left(3x\right)+\frac{2}{9}x\cos\left(3x\right)-\frac{2}{27}\sin\left(3x\right). The integral \int x^2\sin\left(3x\right)dx results in: -\frac{1}{3}x^2\cos\left(3x\right)+\frac{2}{9}x\sin\left(3x\right)+\frac{2}{27}\cos\left(3x\right).

Final answer to the problem

$\frac{25}{27}\sin\left(3x\right)+\frac{2}{9}x\cos\left(3x\right)+\frac{1}{3}x^2\sin\left(3x\right)-\frac{25}{27}\cos\left(3x\right)+\frac{2}{9}x\sin\left(3x\right)-\frac{1}{3}x^2\cos\left(3x\right)-\frac{2}{9}\cos\left(3x\right)-\frac{2}{3}x\sin\left(3x\right)-\frac{2}{9}\sin\left(3x\right)+\frac{2}{3}x\cos\left(3x\right)+C_0$

Explore different ways to solve this problem

Solving a math problem using different methods is important because it enhances understanding, encourages critical thinking, allows for multiple solutions, and develops problem-solving strategies. Read more

Help us improve with your feedback!

Function Plot

Plotting: $\frac{25}{27}\sin\left(3x\right)+\frac{2}{9}x\cos\left(3x\right)+\frac{1}{3}x^2\sin\left(3x\right)-\frac{25}{27}\cos\left(3x\right)+\frac{2}{9}x\sin\left(3x\right)-\frac{1}{3}x^2\cos\left(3x\right)-\frac{2}{9}\cos\left(3x\right)-\frac{2}{3}x\sin\left(3x\right)-\frac{2}{9}\sin\left(3x\right)+\frac{2}{3}x\cos\left(3x\right)+C_0$

SnapXam A2
Answer Assistant

beta
Got a different answer? Verify it!

Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

How to improve your answer:

Main Topic: Tabular Integration

Tabular integration is a special technique to solve certain integrals by parts usually made up of two functions: one polynomial and the other transcendent, like the exponential function or the sine. The method consists of deriving the polynomial function several times (until it becomes zero), and integrating the transcendent function several times. This method is usually applied when both functions can be easily derived and integrated multiple times.

Used Formulas

See formulas (8)

Your Personal Math Tutor. Powered by AI

Available 24/7, 365 days a year.

Complete step-by-step math solutions. No ads.

Choose between multiple solving methods.

Download solutions in PDF format and keep them forever.

Unlimited practice with our AI whiteboard.

Premium access on our iOS and Android apps.

Join 500k+ students in problem solving.

Choose your plan. Cancel Anytime.
Pay $39.97 USD securely with your payment method.
Please hold while your payment is being processed.

Create an Account