Final answer to the problem
Step-by-step Solution
How should I solve this problem?
- Choose an option
- Write in simplest form
- Solve by quadratic formula (general formula)
- Find the derivative using the definition
- Simplify
- Find the integral
- Find the derivative
- Factor
- Factor by completing the square
- Find the roots
- Load more...
Divide $x^4+x+1$ by $x+1$
Learn how to solve problems step by step online.
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+1;}{\phantom{;}x^{3}-x^{2}+x\phantom{;}\phantom{-;x^n}}\\\phantom{;}x\phantom{;}+1\overline{\smash{)}\phantom{;}x^{4}\phantom{-;x^n}\phantom{-;x^n}+x\phantom{;}+1\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+1;}\underline{-x^{4}-x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-x^{4}-x^{3};}-x^{3}\phantom{-;x^n}+x\phantom{;}+1\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n;}\underline{\phantom{;}x^{3}+x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;\phantom{;}x^{3}+x^{2}-;x^n;}\phantom{;}x^{2}+x\phantom{;}+1\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n;}\underline{-x^{2}-x\phantom{;}\phantom{-;x^n}}\\\phantom{;;-x^{2}-x\phantom{;}-;x^n-;x^n;}\phantom{;}1\phantom{;}\phantom{;}\\\end{array}$
Learn how to solve problems step by step online. Simplify the expression (x^4+x+1)/(x+1). Divide x^4+x+1 by x+1. Resulting polynomial.