Find the derivative of $\ln\left(x^2\right)$

Related Videos

Go!
Symbolic mode
Text mode
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

Calculus - Using the power rule of logarithms to take the derivative of a natural log, d(ln(x^2))/dx

https://www.youtube.com/watch?v=JIq0y4ST7tc

Tutorial - Condensing logarithmic expressions ex 12, 1/3(2ln(x+3)+lnx-ln(x^2-1))

https://www.youtube.com/watch?v=l8AE8UzknbY

Calculus - Take the derivative using product rule with natural logarithms,, ln(y) = (x^2)ln(x)

https://www.youtube.com/watch?v=4TpfQj_Wj84

Calculus - Using power rule with square root to take derivative on a logarithm, d(ln(sqrt(x+1)))/dx

https://www.youtube.com/watch?v=vbgVpjL8ucU

Finding the derivative square root x over x, using power rule

https://www.youtube.com/watch?v=oR6DDJ-rvbQ

How to find the derivative of square root and cube root using power rule

https://www.youtube.com/watch?v=ge_6J6KIm4I

Function Plot

Plotting: $\frac{2}{x}$

SnapXam A2
Answer Assistant

beta
Got a different answer? Verify it!

Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

How to improve your answer:

Main Topic: Power Rule for Derivatives

The power rule is used to differentiate functions of the form f(x)=x^a, when a is a real number.

Used Formulas

See formulas (2)

Your Personal Math Tutor. Powered by AI

Available 24/7, 365 days a year.

Complete step-by-step math solutions. No ads.

Choose between multiple solving methods.

Download solutions in PDF format and keep them forever.

Unlimited practice with our AI whiteboard.

Premium access on our iOS and Android apps.

Join 500k+ students in problem solving.

Choose your plan. Cancel Anytime.
Pay $39.97 USD securely with your payment method.
Please hold while your payment is being processed.

Create an Account