Final answer to the problem
Step-by-step Solution
How should I solve this problem?
- Choose an option
- Find the derivative using the definition
- Find the derivative using the product rule
- Find the derivative using the quotient rule
- Find the derivative using logarithmic differentiation
- Find the derivative
- Integrate by partial fractions
- Product of Binomials with Common Term
- FOIL Method
- Integrate by substitution
- Load more...
The derivative of the natural logarithm of a function is equal to the derivative of the function divided by that function. If $f(x)=ln\:a$ (where $a$ is a function of $x$), then $\displaystyle f'(x)=\frac{a'}{a}$
Learn how to solve integral calculus problems step by step online.
$\frac{1}{\mathrm{sech}\left(3x+8\right)}\frac{d}{dx}\left(\mathrm{sech}\left(3x+8\right)\right)$
Learn how to solve integral calculus problems step by step online. Find the derivative of ln(sech(3x+8)). The derivative of the natural logarithm of a function is equal to the derivative of the function divided by that function. If f(x)=ln\:a (where a is a function of x), then \displaystyle f'(x)=\frac{a'}{a}. Taking the derivative of hyperbolic secant. Multiplying the fraction by -1. The derivative of a sum of two or more functions is the sum of the derivatives of each function.