6−4⋅646^{-4}\cdot6^46−4⋅64
limn→∞(2n+15n)\lim_{n\to\infty}\left(\frac{2^{n+1}}{5^n}\right)n→∞lim(5n2n+1)
−2q2+28q=94-2q^2+28q=94−2q2+28q=94
limx→+∞(x2+3−x).cos(x)\lim_{x\to+\infty}\left(\sqrt{x^2+3}-x\right).\cos\left(x\right)x→+∞lim(x2+3−x).cos(x)
1.4⋅2.81.4\cdot2.81.4⋅2.8
2x2+8x+262x^2+8x+262x2+8x+26
y−1y−5=y+5y−7\frac{y-1}{y-5}=\frac{y+5}{y-7}y−5y−1=y−7y+5
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!