x y dy=(y+1)(1−x)dxx\:y\:dy=\left(y+1\right)\left(1-x\right)dxxydy=(y+1)(1−x)dx
limx→−∞ (12x5−x3+1)\lim_{x\to-\infty}\:\left(\frac{1}{2}x^5-x^3+1\right)x→−∞lim(21x5−x3+1)
16516^5165
cos(x)⋅(2⋅tan(x)−cos(x))=sin2(x)\cos\left(x\right)\cdot\left(2\cdot\tan\left(x\right)-\cos\left(x\right)\right)=\sin^2\left(x\right)cos(x)⋅(2⋅tan(x)−cos(x))=sin2(x)
y+4x+y−11y−4x+11y−2xy+4x+y-11y-4x+11y-2xy+4x+y−11y−4x+11y−2x
4xydxdy=x2+14xy\frac{dx}{dy}=x^2+14xydydx=x2+1
2y2\sqrt{2y^2}2y2
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!