$\left(x+1\right)\:\:\sqrt{2}x+x^2$
$y=\frac{2}{x}-\frac{1}{x^{2}}$
$\int\left(3x^2+6x+4\right)^5\left(2x+2\right)dx$
$\sin2c\cdot\sin c=\cos c$
$2\left(x-2+\sqrt{6}\right)\left(x-2-\sqrt{6}\right)$
$\lim_{x\to-\infty}\left(\frac{\sqrt{3x^2-4}}{x+1}\right)$
$\frac{\left(2+h\right)^2-2^2}{h}$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!