$\frac{sin\left(x\right)}{1+cos\left(x\right)}+\frac{1+\cos\left(x\right)}{sin\left(x\right)}=\frac{2}{sin\left(x\right)}$
$\left(1-\cos^20\right)\left(1+\cot^20\right)=1$
$\lim_{x\to\infty}\:\frac{2x}{\sqrt{4x^2+1}}$
$\int5e^xdx$
$4a^3b-2a^2b^2-1.1ab^3$
$-\left(-5+7\right)$
$a^4-b^2n^6$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!