$\lim_{y\to3}\left(17-y^2\right)^{\frac{1}{3}}$
$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\left(\frac{\cos\left(x\right)+\sin\left(x\right)}{\sin^2\left(x\right)}\right)dx$
$10x-3+2x$
$\frac{\left(3\left(\infty\right)-2\right)\left(3\left(\infty\right)+1\right)}{\left(2\left(\infty\right)+7\right)\left(\left(\infty\right)-2\right)}$
$x\:+\:x\:+\:x\:+\:x\:=\:4x$
$\left(\frac{1}{3}xy-z^6\right)\left(\frac{1}{3}xz+z^6\right)$
$\lim_{n\to0}\left(\frac{\left|n\cdot\left(1-3^{-n}\right)\right|}{\left|\left(n+1\right)\cdot\left(1-3^{\left(-n+1\right)}\right)\right|}\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!