y′+4y=20,y(0)=2y^{\prime}+4y=20,y\left(0\right)=2y′+4y=20,y(0)=2
∫(−3x+2)4dx\int\left(-3x+2\right)^4dx∫(−3x+2)4dx
2cos(2x)\frac{2}{\cos\left(2x\right)}cos(2x)2
dydx(12sin(y)+2cos(2x)=13xy)\frac{dy}{dx}\left(12sin\left(y\right)+2cos\left(2x\right)=13xy\right)dxdy(12sin(y)+2cos(2x)=13xy)
3x2+4x=13x^2+4x=13x2+4x=1
3−2 x 5 +7 x 43-2\:x\:5\:+7\:x\:43−2x5+7x4
limx→0(ln(2−cos(x)2)(sin(x)+tan(x))2)\lim_{x\to0}\left(\frac{\ln\left(2-\cos\left(x\right)^2\right)}{\left(\sin\left(x\right)+\tan\left(x\right)\right)^2}\right)x→0lim⎝⎛(sin(x)+tan(x))2ln(2−cos(x)2)⎠⎞
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!