Find the integral $\int\frac{x}{x^2-1}dx$

Step-by-step Solution

Go!
Symbolic mode
Text mode
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

Final answer to the problem

$\frac{1}{2}\ln\left|x+1\right|+\frac{1}{2}\ln\left|x-1\right|+C_0$
Got another answer? Verify it here!

Step-by-step Solution

How should I solve this problem?

  • Integrate by partial fractions
  • Integrate by substitution
  • Integrate by parts
  • Integrate using tabular integration
  • Integrate by trigonometric substitution
  • Weierstrass Substitution
  • Integrate using trigonometric identities
  • Integrate using basic integrals
  • Product of Binomials with Common Term
  • FOIL Method
  • Load more...
Can't find a method? Tell us so we can add it.

Simplify $\sqrt{x^2}$ using the power of a power property: $\left(a^m\right)^n=a^{m\cdot n}$. In the expression, $m$ equals $2$ and $n$ equals $\frac{1}{2}$

$\int\frac{x}{\left(x+\sqrt{1}\right)\left(\sqrt{x^2}-\sqrt{1}\right)}dx$

Calculate the power $\sqrt{1}$

$\int\frac{x}{\left(x+1\right)\left(\sqrt{x^2}-\sqrt{1}\right)}dx$

Simplify $\sqrt{x^2}$ using the power of a power property: $\left(a^m\right)^n=a^{m\cdot n}$. In the expression, $m$ equals $2$ and $n$ equals $\frac{1}{2}$

$\int\frac{x}{\left(x+1\right)\left(x-\sqrt{1}\right)}dx$

Calculate the power $\sqrt{1}$

$\int\frac{x}{\left(x+1\right)\left(x- 1\right)}dx$

Any expression multiplied by $1$ is equal to itself

$\int\frac{x}{\left(x+1\right)\left(x-1\right)}dx$
1

Factor the difference of squares $x^2-1$ as the product of two conjugated binomials

$\int\frac{x}{\left(x+1\right)\left(x-1\right)}dx$

Rewrite the fraction $\frac{x}{\left(x+1\right)\left(x-1\right)}$ in $2$ simpler fractions using partial fraction decomposition

$\frac{x}{\left(x+1\right)\left(x-1\right)}=\frac{A}{x+1}+\frac{B}{x-1}$

Find the values for the unknown coefficients: $A, B$. The first step is to multiply both sides of the equation from the previous step by $\left(x+1\right)\left(x-1\right)$

$x=\left(x+1\right)\left(x-1\right)\left(\frac{A}{x+1}+\frac{B}{x-1}\right)$

Multiplying polynomials

$x=\frac{\left(x+1\right)\left(x-1\right)A}{x+1}+\frac{\left(x+1\right)\left(x-1\right)B}{x-1}$

Simplifying

$x=\left(x-1\right)A+\left(x+1\right)B$

Assigning values to $x$ we obtain the following system of equations

$\begin{matrix}-1=-2A&\:\:\:\:\:\:\:(x=-1) \\ 1=2B&\:\:\:\:\:\:\:(x=1)\end{matrix}$

Proceed to solve the system of linear equations

$\begin{matrix} -2A & + & 0B & =-1 \\ 0A & + & 2B & =1\end{matrix}$

Rewrite as a coefficient matrix

$\left(\begin{matrix}-2 & 0 & -1 \\ 0 & 2 & 1\end{matrix}\right)$

Reducing the original matrix to a identity matrix using Gaussian Elimination

$\left(\begin{matrix}1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{1}{2}\end{matrix}\right)$

The integral of $\frac{x}{\left(x+1\right)\left(x-1\right)}$ in decomposed fractions equals

$\frac{1}{2\left(x+1\right)}+\frac{1}{2\left(x-1\right)}$
2

Rewrite the fraction $\frac{x}{\left(x+1\right)\left(x-1\right)}$ in $2$ simpler fractions using partial fraction decomposition

$\frac{1}{2\left(x+1\right)}+\frac{1}{2\left(x-1\right)}$
3

Expand the integral $\int\left(\frac{1}{2\left(x+1\right)}+\frac{1}{2\left(x-1\right)}\right)dx$ into $2$ integrals using the sum rule for integrals, to then solve each integral separately

$\int\frac{1}{2\left(x+1\right)}dx+\int\frac{1}{2\left(x-1\right)}dx$
4

We can solve the integral $\int\frac{1}{2\left(x+1\right)}dx$ by applying integration by substitution method (also called U-Substitution). First, we must identify a section within the integral with a new variable (let's call it $u$), which when substituted makes the integral easier. We see that $x+1$ it's a good candidate for substitution. Let's define a variable $u$ and assign it to the choosen part

$u=x+1$

Differentiate both sides of the equation $u=x+1$

$du=\frac{d}{dx}\left(x+1\right)$

Find the derivative

$\frac{d}{dx}\left(x+1\right)$

The derivative of a sum of two or more functions is the sum of the derivatives of each function

$1$
5

Now, in order to rewrite $dx$ in terms of $du$, we need to find the derivative of $u$. We need to calculate $du$, we can do that by deriving the equation above

$du=dx$

$\int\frac{1}{2u}du$

Take the constant $\frac{1}{2}$ out of the integral

$\frac{1}{2}\int\frac{1}{u}du$
6

Substituting $u$ and $dx$ in the integral and simplify

$\frac{1}{2}\int\frac{1}{u}du+\int\frac{1}{2\left(x-1\right)}dx$

The integral of the inverse of the lineal function is given by the following formula, $\displaystyle\int\frac{1}{x}dx=\ln(x)$

$\frac{1}{2}\ln\left|u\right|$

Replace $u$ with the value that we assigned to it in the beginning: $x+1$

$\frac{1}{2}\ln\left|x+1\right|$
7

The integral $\frac{1}{2}\int\frac{1}{u}du$ results in: $\frac{1}{2}\ln\left(x+1\right)$

$\frac{1}{2}\ln\left(x+1\right)$

Take the constant $\frac{1}{2}$ out of the integral

$\frac{1}{2}\int\frac{1}{x-1}dx$

Apply the formula: $\int\frac{n}{x+b}dx$$=nsign\left(x\right)\ln\left(x+b\right)+C$, where $b=-1$ and $n=1$

$1\left(\frac{1}{2}\right)\ln\left|x-1\right|$

Any expression multiplied by $1$ is equal to itself

$\frac{1}{2}\ln\left|x-1\right|$
8

The integral $\int\frac{1}{2\left(x-1\right)}dx$ results in: $\frac{1}{2}\ln\left(x-1\right)$

$\frac{1}{2}\ln\left(x-1\right)$
9

Gather the results of all integrals

$\frac{1}{2}\ln\left|x+1\right|+\frac{1}{2}\ln\left|x-1\right|$
10

As the integral that we are solving is an indefinite integral, when we finish integrating we must add the constant of integration $C$

$\frac{1}{2}\ln\left|x+1\right|+\frac{1}{2}\ln\left|x-1\right|+C_0$

Final answer to the problem

$\frac{1}{2}\ln\left|x+1\right|+\frac{1}{2}\ln\left|x-1\right|+C_0$

Explore different ways to solve this problem

Solving a math problem using different methods is important because it enhances understanding, encourages critical thinking, allows for multiple solutions, and develops problem-solving strategies. Read more

Help us improve with your feedback!

Function Plot

Plotting: $\frac{1}{2}\ln\left(x+1\right)+\frac{1}{2}\ln\left(x-1\right)+C_0$

SnapXam A2
Answer Assistant

beta
Got a different answer? Verify it!

Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

How to improve your answer:

Your Personal Math Tutor. Powered by AI

Available 24/7, 365 days a year.

Complete step-by-step math solutions. No ads.

Choose between multiple solving methods.

Download solutions in PDF format and keep them forever.

Unlimited practice with our AI whiteboard.

Premium access on our iOS and Android apps.

Join 500k+ students in problem solving.

Choose your plan. Cancel Anytime.
Pay $39.97 USD securely with your payment method.
Please hold while your payment is being processed.

Create an Account