Final answer to the problem
Step-by-step Solution
How should I solve this problem?
- Choose an option
- Write in simplest form
- Prime Factor Decomposition
- Solve by quadratic formula (general formula)
- Find the derivative using the definition
- Simplify
- Find the integral
- Find the derivative
- Factor
- Factor by completing the square
- Load more...
Simplify ${\left(\left({\left(-2\right)}^3\right)\right)}^4$ using the power of a power property: $\left(a^m\right)^n=a^{m\cdot n}$. In the expression, $m$ equals $3$ and $n$ equals $4$
Learn how to solve differential calculus problems step by step online.
$\frac{\left({\left(-2\right)}^{12}\cdot 2^2\right)^3\cdot \left({\left(-3\right)}^4\right)^7}{2^5\cdot {\left(-2\right)}^5\cdot {\left(-5\right)}^{12}}$
Learn how to solve differential calculus problems step by step online. Divide (((-2)^3^4*2^2)^3(-3)^4^7)/(2^5(*-2)^5(*-5)^12). Simplify {\left(\left({\left(-2\right)}^3\right)\right)}^4 using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals 3 and n equals 4. Simplify \left({\left(-3\right)}^4\right)^7 using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals 4 and n equals 7. Calculate the power {\left(-2\right)}^{12}. Calculate the power 2^5.