Final answer to the problem
Step-by-step Solution
How should I solve this problem?
- Choose an option
- Integrate by partial fractions
- Integrate by substitution
- Integrate by parts
- Integrate using tabular integration
- Integrate by trigonometric substitution
- Weierstrass Substitution
- Integrate using trigonometric identities
- Integrate using basic integrals
- Product of Binomials with Common Term
- Load more...
Expand the integral $\int\left(4-18w^{11}-9w^9+8w^7+2w^5\right)dw$ into $5$ integrals using the sum rule for integrals, to then solve each integral separately
Learn how to solve problems step by step online.
$\int4dw+\int-18w^{11}dw+\int-9w^9dw+\int8w^7dw+\int2w^5dw$
Learn how to solve problems step by step online. Integrate int(4-18w^11-9w^98w^72w^5)dw. Expand the integral \int\left(4-18w^{11}-9w^9+8w^7+2w^5\right)dw into 5 integrals using the sum rule for integrals, to then solve each integral separately. The integral \int4dw results in: 4w. The integral \int-18w^{11}dw results in: -\frac{3}{2}w^{12}. The integral \int-9w^9dw results in: -\frac{9}{10}w^{10}.