Final answer to the problem
Step-by-step Solution
How should I solve this problem?
- Choose an option
- Integrate by partial fractions
- Integrate by substitution
- Integrate by parts
- Integrate using tabular integration
- Integrate by trigonometric substitution
- Weierstrass Substitution
- Integrate using trigonometric identities
- Integrate using basic integrals
- Product of Binomials with Common Term
- Load more...
Rewrite the integrand $5\left(\frac{3}{2\sqrt{x}}+\frac{-9}{2\sqrt{x^{3}}}\right)\left(3\sqrt{x}+\frac{9}{\sqrt{x}}\right)$ in expanded form
Learn how to solve problems step by step online.
$\int\frac{5\left(9x^2-81\right)}{2x^2}dx$
Learn how to solve problems step by step online. Integrate int(5(3/(2x^(1/2))+-9/(2x^(3/2)))(3x^(1/2)+9/(x^(1/2))))dx. Rewrite the integrand 5\left(\frac{3}{2\sqrt{x}}+\frac{-9}{2\sqrt{x^{3}}}\right)\left(3\sqrt{x}+\frac{9}{\sqrt{x}}\right) in expanded form. Take out the constant 5 from the integral. Take the constant \frac{1}{2} out of the integral. Multiply the fraction and term in 5\cdot \left(\frac{1}{2}\right)\int\frac{9x^2-81}{x^2}dx.