$\lim_{x\to\infty}\left(\frac{2x^4+5x-6}{2x^2+5}\right)$
$u=\left|\text{\left(x+4\right)^{2 }}-\left(x+3\right)^{2\:}+\left(x+1\right)^2-\left(x+2\right)^2\right|^2$
$\lim_{x\to1}\left(x-1\right)^2.\ln\left(x-1\right)$
$\left(4-x\right)\cdot\left(4+x\right)$
$\int-\frac{1}{2}xcos\left(x\right)dx$
$2x^2-3x+4,\:para\:x=\:2$
$-\left(12-18\right)+\left(-3\right)+\left(-3-15\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!