$\int\sqrt{\frac{x^2-36}{x^6}}dx$
$\frac{dy}{dx}=\frac{x+10y}{10x+y}$
$\left(2y-70\right)$
$\frac{d}{dx}x^2+4y$
$\lim\:_{\theta\:\to\:\frac{\pi\:}{2}}\left(\frac{8\theta\:-4\pi\:}{cos\left(2\pi\:-\theta\:\right)}\right)$
$x^2y-3xy'+4y=0$
$5-\left(7-6+8-12+3-4\right)-8+6-\left(12-13+5-3-7\right)+10-5-\left(-5-9\right)+3$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!