Prove the trigonometric identity $\sec\left(x\right)=\frac{\sin\left(2x\right)}{\sin\left(x\right)}+\frac{-\cos\left(2x\right)}{\cos\left(x\right)}$

Step-by-step Solution

Go!
Symbolic mode
Text mode
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

Final answer to the problem

true

Step-by-step Solution

How should I solve this problem?

  • Prove from RHS (right-hand side)
  • Prove from LHS (left-hand side)
  • Express everything into Sine and Cosine
  • Exact Differential Equation
  • Linear Differential Equation
  • Separable Differential Equation
  • Homogeneous Differential Equation
  • Integrate by partial fractions
  • Product of Binomials with Common Term
  • FOIL Method
  • Load more...
Can't find a method? Tell us so we can add it.
1

Starting from the right-hand side (RHS) of the identity

$\frac{\sin\left(2x\right)}{\sin\left(x\right)}+\frac{-\cos\left(2x\right)}{\cos\left(x\right)}$
2

Using the sine double-angle identity: $\sin\left(2\theta\right)=2\sin\left(\theta\right)\cos\left(\theta\right)$

$\frac{2\sin\left(x\right)\cos\left(x\right)}{\sin\left(x\right)}+\frac{-\cos\left(2x\right)}{\cos\left(x\right)}$
Why does sin(2x) = 2sin(x)cos(x) ?
3

Simplify the fraction $\frac{2\sin\left(x\right)\cos\left(x\right)}{\sin\left(x\right)}$ by $\sin\left(x\right)$

$2\cos\left(x\right)+\frac{-\cos\left(2x\right)}{\cos\left(x\right)}$

Combine all terms into a single fraction with $\cos\left(x\right)$ as common denominator

$\frac{2\cos\left(x\right)\cos\left(x\right)-\cos\left(2x\right)}{\cos\left(x\right)}$

When multiplying two powers that have the same base ($\cos\left(x\right)$), you can add the exponents

$\frac{2\cos\left(x\right)^2-\cos\left(2x\right)}{\cos\left(x\right)}$
4

Combine all terms into a single fraction with $\cos\left(x\right)$ as common denominator

$\frac{2\cos\left(x\right)^2-\cos\left(2x\right)}{\cos\left(x\right)}$
5

Apply the trigonometric identity: $\cos\left(2\theta \right)$$=2\cos\left(\theta \right)^2-1$

$\frac{2\cos\left(x\right)^2-\left(2\cos\left(x\right)^2-1\right)}{\cos\left(x\right)}$

Simplify the product $-(2\cos\left(x\right)^2-1)$

$\frac{2\cos\left(x\right)^2-2\cos\left(x\right)^2- -1}{\cos\left(x\right)}$

Multiply $-1$ times $-1$

$\frac{2\cos\left(x\right)^2-2\cos\left(x\right)^2+1}{\cos\left(x\right)}$
6

Simplify the product $-(2\cos\left(x\right)^2-1)$

$\frac{2\cos\left(x\right)^2-2\cos\left(x\right)^2+1}{\cos\left(x\right)}$
7

Cancel like terms $2\cos\left(x\right)^2$ and $-2\cos\left(x\right)^2$

$\frac{1}{\cos\left(x\right)}$
8

Applying the trigonometric identity: $\displaystyle\sec\left(\theta\right)=\frac{1}{\cos\left(\theta\right)}$

$\sec\left(x\right)$
9

Since we have reached the expression of our goal, we have proven the identity

true

Final answer to the problem

true

Explore different ways to solve this problem

Solving a math problem using different methods is important because it enhances understanding, encourages critical thinking, allows for multiple solutions, and develops problem-solving strategies. Read more

Help us improve with your feedback!

Function Plot

Plotting: $true$

Main Topic: Logarithmic Differentiation

The logarithmic derivative of a function f(x) is defined by the formula f'(x)/f(x).

Your Personal Math Tutor. Powered by AI

Available 24/7, 365 days a year.

Complete step-by-step math solutions. No ads.

Choose between multiple solving methods.

Download solutions in PDF format and keep them forever.

Unlimited practice with our AI whiteboard.

Premium access on our iOS and Android apps.

Join 500k+ students in problem solving.

Choose your plan. Cancel Anytime.
Pay $39.97 USD securely with your payment method.
Please hold while your payment is being processed.

Create an Account